
ALCF Early Science Program

ESP Kick-Off Workshop
Project Plan Presentation

Ab-initio Reaction Calculations for Carbon-12

PI: Steven Pieper (Argonne)
Work with:
Ralph Butler (MSTU)
Joseph Carlson (LANL)
Rusty Lusk (Argonne)
Robert Wiringa (Argonne)
Presenter:Steven Pieper
October 18–19, 2010 0 1 2 3 4

0.00

0.02

0.04

0.06

0.08

0.10

r (fm)

ρ p
 (

fm
-3

)

GFMC − AV18+IL7

Experiment

12C
Density

PROJECTOVERVIEW

Calculate fundamental properties of12C nucleus by computing density
matrix and response functions.

• Compute neutrino-nucleus reaction cross sections

– Needed to analyze ongoing neutrino experiments

– Only source of these cross sections, no experimental data
available at present

• Compute electron-nucleus scattering cross sections
– Needed to analyze quasi-elastic knock-out scattering experiments
at JLab

• BG/Q enables proposed density-matrix and response calculations
(too big for Intrepid)

Scientific Field: Nuclear Structure
Codes: GFMC

COMPUTATIONAL APPROACH, NUMERICAL METHODS

• Green’s Function Monte Carlo (GFMC)

– Starts with an approximate wave function (ΨT) and evolves it to
the exactΨ for the given nuclear interaction (Hamiltonian)

– Evolution is done as a sequence of imaginary time steps
– Each time step is a 3×(number-of-nucleons) integral
– Result is a∼70,000-dimensional integral done by Monte Carlo

• Dynamic load balancing

– Monte Carlo integration done by branching random walk
– Branching multiplies and destroys configurations – load fluctuates
– Work for a single MC sample must be distributed to many nodes

• CPU time dominated by sparse matrix× vector operations

– Kernel subtroutines based on explicit (complex) matrix structure
– Recently improved by Vitali Morozov & James Osborn
– OpenMP works well on BG/P for these

PARALLELISM AND EXISTING IMPLEMENTATION

• Automatic Dynamic Load Balancing (ADLB) & MPI
used for inter-node communication

• OpenMP is used for the four cores on a BG/P node
• Current Performance/Scalability is quite good
• BG/P production jobs mostly done on 8 racks

1 2 3 4
0

500

1000

1500

2000

cores used per node

M
F

LO
P

/s
ec

 p
er

 n
od

e

OpenMP strong scaling study: 512-node GFMC job

Kernel subs
Weighted kernel average
Job CPU MFLOPS
Job wall MFLOPS

2 cores × 2 ranks

Ideal scaling

L IBRARY AND TOOL DEPENDENCIES

• Libraries: Automatic Dynamic Load Balancing (ADLB)

– Developed by us as part of UNEDF SciDAC
– Nodes put work packages into ADLB & request work from it
– The GFMC code has been the principal test bed
– Perfect scaling to 16,384 nodes, good to 32,768 nodes of BG/P
– ADLB is a general purpose library; give it a try! –

http://www.cs.mtsu.edu/∼rbutler/adlb

• Tools

– gprof
– jumpshot

ANTICIPATED MODIFICATIONS FORBLUE GENE/Q

• We hope that OpenMP will scale well to 16 cores per node

– Must use at least 2 cores/rank to get 2 Gbyte/rank
– Should have no communication problems with one rank per node
– Initial efforts will be concentrated on OpenMP

• Will also work on single core & thread performance improvement

• Current ADLB should work well; we are also designing a new
version using MPI one-sided puts & gets

• We have to develop subroutines for the density matrix

• We have to developΨT for the excited states of12C

PLAN FOR NEXT SIX MONTHS EFFORT

• Help find and hire a project postdoc

• Continue work on one-sided version of ADLB

• Start work on density-matrix calculations (using small nuclei)

• Work on starting wave functions (ΨT) for 12C states

AUTOMATIC DYNAMIC LOAD BALANCING – THE API

• Startup and termination

– ADLB Init(num servers, amserver, appcommunicator)

– ADLB Server()

– ADLB SetNo More Work()

– ADLB Finalize()

• Putting work or answers

– ADLB Begin Batch Put(commonbuffer, length) – optional

– ADLB Put(type, priority, length, buffer, answerdestination)

– ADLB End Batch Put() – optional

• Getting work or answers

– ADLB Reserve(reqtypes, workhandle, length, type, priority, answerdestination)

– or ADLB Ireserve(· · ·)

– ADLB Get Reserved(workhandle, buffer)

ADLB – CURRENT GFMC IMPLEMENTATION

Old GFMC

Each slave gets several configurations

Slave

propagates configurations

(few w.f. evaluations)

replicates or kills configs (branching)

→ periodic global redistribution

computes energies

(many w.f. evaluations)

Need∼10 configs per slave
12C will have only∼10,000 configs.

Can’t do on more than 2000 processors

Configurations cannot be unit of

parallelization

With ADLB

A few “boss” slaves manage the propagation:
• Generate propagation work packages

– Answers used to make 0,1,2,· · · new
propagation packages (branching)

– Number of prop. packages fluctuates

– Global redistribution may be avoided
• Generate energy packages – No answers

When propagation done, become worker slaves

Most slaves ask ADLB for work packages:

• Propagation package
– Makes w.f. and3N potential packages

• Energy package
– Makes many w.f. packages
– Makes3N potential packages
– Result sent to Master for averaging

• Wave Function or3N potential package
– Result sent to requester

Wave function is parallelization unit

Can have many more nodes than configurations

